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1. Introduction and Preliminaries

The notion of the measures (or degrees) of fuzzy compactness in (L,M)-fuzzy
topological spaces was introduced by Hong-Yan Li and Fu-Gui Shi [4, 5] and a ver-
sion on the proof of generalized Tychonoff theorem was obtained indirectly through
using the subbase of (L,M)-fuzzy topology.

The relationship between (L,M)-fuzzy topology and (L,M)-fuzzy neighborhood
system were further studied [8], and the initial structures of (L,M)-fuzzy neighbor-
hood subspaces and (L,M)-fuzzy topological product spaces were given.

The construction of initial structures in the category of (L,M)-fuzzy topological
spaces through those in the category of (L,M)-fuzzy neighborhood systems really
looks rather interesting; the fact that the two categories are isomorphic [8], however,
enables researchers to substitute one of them with the other, to find a solution of a
complicated problem. A natural problem is: Can the proof of generalized Tychonoff
theorem be given directly in an (L,M)-fuzzy topological space?

In this paper, using the structures of (L,M)-fuzzy topological product spaces [8],
we directly give another version on the proof of generalized Tychonoff theorem in
(L,M)-fuzzy topological spaces.
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The following preliminaries will be used throughout this paper, which can be
found in [1, 6].

A complete lattice L is called completely distributive, if one of the following
conditions hold (the second then following as a consequence [1]):

(CD1) ∧
i∈I

(∨
i∈Ji

ai,j

)
=

∨
f∈

∏
Ji

(∧
i∈I

ai,f(i)

)
,

(CD2) ∨
i∈I

(∧
i∈Ji

ai,j

)
=

∧
f∈

∏
Ji

(∨
i∈I

ai,f(i)

)
,

where for each i ∈ I and j ∈ Ji, ai,j ∈ L and f ∈
∏
Ji means that f is a mapping

f : I →
⋃
Ji such that f(i) ∈ Ji for each i ∈ I.

An element a 6= 0 in a lattice is called coprime if a ≤ b∨c implies a ≤ b or a ≤ c for
all b, c ∈ L. Further, a is said to be join irreducible if a = b∨c implies a = b or a = c
for all b, c ∈ L. The set of all coprime elements (resp. join irreducible elements) of
L is denoted by Copr(L) (resp. J(L)). It can be verified that if L is distributive,
then a ∈ L is coprime iff it is join irreducible, which means Copr(L) = J(L). So, for
convenience, we usually use J(L) to stand for the set of all coprime elements of L if
L is distributive. If L is a completely distributive lattice and x�

∨
t∈T yt, then there

must be t? ∈ T such that x � yt? (here x � a means: K ⊂ L, a ≤
∨
K ⇒ ∃y ∈ K

such that x≤y). Some more properties of � can be found in [6].
Let L be a complete lattice, let b ∈ L, and let A ⊆ L. If (i)

∨
A = b, (ii) if C ⊆ L

and
∨
C ≥ b, then ∀x ∈ A, there esists y ∈ C such that y ≥ x. Then A is said

to be a minimal family of b. It can prove that the supremum of several minimal
families of b is still a minimal family of b. Thus, if b has a minimal family, there
must be a maximum minimum family, denoted as β(b). It can be verified that if L
is a completely distributive lattice iff each element b in L has a minimal family, and
β(b)(= {a ∈ L | a� b}) is the greatest minimal family of b, β∗(b) = β(b) ∩ J(L).

An element a 6= 1 in a lattice is called prime if a ≥ b ∧ c implies a ≥ b or a ≥ c
for all b, c ∈ L. The set of all primes of L is denoted by P (L). If L is a completely
distributive lattice, then for each a ∈ L, there exists Bx ⊆ P (L) such that

∧
Bx = x.

α(b) is the greatest maximal family of b, α∗(b) = α(b) ∩ P (L) (see [7]).
In the rest of the paper, L and M always denote Hutton algebras. A Hutton

algebra L, is a completely distributive lattice with order-reversing involution with the
least element 0 and the greatest element 1. Recall that an order-reversing involution
′ on L is a map (−)′ : L −→ L such that for any a, b ∈ L, the following conditions
hold: (1) a ≤ b implies b′ ≤ a′. (2) a′′ = a. The following properties hold for any
subset {bi : i ∈ I} ∈ L: (1) (

∨
i∈I bi)

′ =
∧
i∈I b

′
i; (2) (

∧
i∈I bi)

′ =
∨
i∈I b

′
i. We notice

that LX , the set of all L-subsets of X, is also a Hutton algebra with pointwise order.
Its smallest element and the largest element are denoted 0X and 1X , respectively.
For each A ∈ LX , the L-subset A′ is defined A′(x) = (A(x))

′
for each x ∈ X.

Clearly, J(LX) = {xλ : x ∈ X,λ ∈ J(L)}, where xλ is defined by xλ(y) = λ if y = x
and xλ(y) = 0 otherwise.

For a subfamily ϕ ⊆ LX , 2(ϕ) denotes the set of all finite subfamilies of ϕ.
2
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Definition 1.1 ([2, 3]). An (L,M)-fuzzy topology on a set X is a map T : LX −→
M such that

(LMFT1) T (1X) = T (0X) = 1,
(LMFT2) ∀ U, V ∈ LX , T (U ∧ V ) ≥ T (U) ∧ T (V ),

(LMFT3) ∀{Uj : j ∈ J} ⊆ LX , T

( ∨
j∈J

Uj

)
>
∧
j∈J
T (Uj).

T (U) can be interpreted as the degree to which U is an open L-set, T ?(U) =
T (U ′) will be called the degree of closedness. The pair (X, T ) is called (L,M)-fuzzy
topological space. A mapping f : X −→ Y from an (L,M)-fuzzy topological space
(X, T1) to another (L,M)-fuzzy topological space (Y, T2) is said to be continuous if
T1(f←(B)) ≥ T2(B) for each B ∈ LY . The category of all (L,M)-fuzzy topological
spaces and their continuous mappings is denoted by (L,M)-FTOP.

The next Definition 1.2 and Lemma 1.3 were introduced by Shi [9] for an L-fuzzy
topology, but could be easily reformulated for (L,M)-fuzzy topology as follows (See
also, [8, 9]).

Definition 1.2. An (L,M)-fuzzy neighborhood system on a set X is a map N :

LX −→MJ(LX) satisfying the following conditions:
(LMFN1) N (1X)(xλ) = 1, N (0X)(xλ) = 0 (∀ xλ ∈ J(LX)),
(LMFN2) N (U)(xλ) = 0 (∀ U ∈ LX ,∀ xλ ∈ J(LX), xλ 6≤ U),
(LMFN3) N (U ∧V )(xλ) = N (U)(xλ)∧N (V )(xλ) (∀ U, V ∈ LX ,∀ xλ ∈ J(LX)),
(LMFN4) N (U)(xλ) =

∨
xλ≤V≤U

∧
yµ�V

N (V )(yµ) (∀U ∈ LX , xλ, yµ ∈ J(LX)).

N (U)(xλ) is called the degree to which xλ belongs to the neighborhood of U .
The pair (X,N ) is called an (L,M)-fuzzy neighborhood space. A mapping f :
X −→ Y from an (L,M)-fuzzy neighborhood space (X,N1) to another (L,M)-
fuzzy neighborhood space (Y,N2) is said to be continuous if N2(U)(f→(xλ)) ≤
N1(f←(U))(xλ) for each U ∈ LY and each xλ ∈ J(LX). The category of all (L,M)-
fuzzy neighborhood spaces and their continuous mappings is denoted by (L,M)-
FNS.

Lemma 1.3. (1) Define NT : LX −→MJ(LX) by

NT (U)(xλ) =
∨

xλ≤V≤U

T (V ) (∀U ∈ LX ,∀xλ ∈ J(LX)).

Then NT is an (L,M)-fuzzy neighborhood system induced by T .
(2) Define TN : LX −→M by

TN (U) =
∧
xλ�U

N (U)(xλ) (∀U ∈ LX).

Then TN is an (L,M)-fuzzy topology induced by N .
(3) NT N = Nand TNT = T .
(4) (L,M)-FTOP is isomorphic to (L,M)-FNS.

Definition 1.4 ([8, 9]). For any set X, let {(Xj , Tj)}j∈I be a family of (L,M)-
FTOP-objects, let X =

∏
j∈I

Xj , and let pj : X −→ Xj be the j-th projection. The

3
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product (L,M)-fuzzy topology on X, denoted by
∏
j∈I
Tj , is the weakest (L,M)-fuzzy

topology on X such that pj is continuous for each j ∈ I. The pair (X,
∏
j∈I
Tj) is

called the product space of {(Xj , Tj)}j∈I .
Theorem 1.5 ([8, 9]). (1) If T =

∏
j∈I
Tj, then T =

∨
j∈I

p←j (Tj).

(2) If (Y, TY ) is an (L,M)-fuzzy topological space, then a mapping g : Y −→ X
is continuous if and only if pj ◦ g (∀j ∈ I) is continuous.

(3) ∀xλ ∈ J(LX), ∀A ∈ LX and every index set I, we have

NT (A)(xλ) =
∨

J⊆Ifinite

∧
j∈J
NTj (Aj)(p→j (xλ)) |

∧
j∈J

p←j (Aj) ≤ A


and

(
∏
j∈I
Tj)(A) =

∧
xλ�A

∨
J⊆Ifinite

∧
j∈J
NTj (Aj)(p→j (xλ)) |

∧
j∈J

p←j (Aj) ≤ A

 .

Definition 1.6 ([4, 5]). Let T : LX −→M be a map. ∀A ∈ LX , let

ST (A) =

U ⊆ LX | ∧
x∈X

(
A′(x) ∨

∨
B∈U

B(x)

)
6≤

∨
V∈2(U)

∧
x∈X

(
A′(x) ∨

∨
B∈V

B(x)

) ,

FCDT (A) =
∧

U∈ST (A)

∨
B∈U
T ′(B).

If (X, T ) is an (L,M)-fuzzy topological space, then FCDT (A) is called the degree
of fuzzy compactness of A with respect to T . A is called fuzzy compact with respet
to (L,M)-fuzzy topology T , if FCDT (A) = 1.

Lemma 1.7 ([5]). Let f : X −→ Y be a set map. T1 be an (L,M)-fuzzy topology on
X, T2 be an (L,M)-fuzzy topology on Y , and f : (X, T1) −→ (Y, T2) be continuous.
Then ∀A ∈ LX ,

FCDT2(f→(A)) ≥ FCDT1(A).

The main results are as follows:

Theorem 1.8 ([4, 5]). (1) Let (X, T ) be the product (L,M)-fuzzy topological space

of {(Xj , Tj)}j∈I . Then ∀A =
∏
j∈I

Aj ∈ L
∏
j∈I

Xj
,

FCDT (A) ≥
∧
j∈I

FCDTj (Aj),

where Aj ∈ LXj for any j ∈ I.
(2) Let (X, T ) be the product (L,M)-fuzzy topological space of {(Xj , Tj)}j∈I .

Then
FCDT (1X) =

∧
j∈I

FCDTj (1Xj ).

4
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2. A new proof of the main results

The Proof of Theorem 1.8

Proof. (1) Suppose that b ∈M and
∧
j∈I

FCDTj (Aj) 6≤ b. Then there exists a ∈ α∗(b)

such that
∧
j∈I

FCDTj (Aj) 6≤ a. Thus FCDTj (Aj) 6≤ a for any j ∈ I. Notice that

FCDTj (Aj) =
∧

Uj∈ST (Aj)

∨
B∈Uj

Tj ′(B),

we have
∀j ∈ I, ∀Uj ∈ ST (Aj), there exists B ∈ Uj such that T ′j (B) 6≤ a, i.e.,

∀j ∈ I, ∀Uj ⊆ LXj , if ∀B ∈ Uj , Tj(B) ≥ a′, then Uj 6∈ ST (Aj).
We can prove that FCDT (A) 6≤ b. If not,

FCD′T (A) =
∨

U∈ST (A)

∧
C∈U
T (C) ≥ b′ ≥ a′,

then there exists U0 ∈ ST (A) and ∀C ∈ U0, T (C) ≥ a′. Notice that

T (C) = (
∏
j∈I
Tj)(C) =

∧
xλ�C

∨
J⊆Ifinite

∧
j∈J
NTj (Cj)(p→j (xλ)) |

∧
j∈J

p←j (Cj) ≤ C

 ,

for any C ∈ U0.
Thus ∀xλ � C, there exists a finite J of I and Cj ∈ LXj (∀j ∈ J) such that∧

j∈J
p←j (Cj) ≤ C and a′ ≤ NTj (Cj)(p→j (xλ)), for any j ∈ J . Further, there exists

Vj ∈ LXj such that p→j (xλ) ≤ Vj ≤ Cj and a′ ≤ Tj(Vj),

since

NTj (Cj)(p→j (xλ)) =
∨

p→j (xλ)≤Vj≤Cj

Tj(Vj).

From the above proved, we can obtain the following result:
If there exists U0 ∈ ST (A), and ∀C ∈ U0, T (C) ≥ a′, then ∀C ∈ U0, there exists

a finite J of I and Vj ∈ LXj (∀j ∈ J) such that
∧
j∈J

p←j (Vj) = C and a′ ≤ Tj(Vj).

Notice that,
∧
j∈J

p←j (Vj) = C implies p←j (Vj) = C (∀j ∈ J). In fact, C ≤ p←j (Vj) is

obvious.
On the other hand, ∀j ∈ J, let b ∈ M, p←j (Vj) 6≤ b. Then there exists a ∈ α(b)

such that p←j (Vj) 6≤ a. thus C =
∧
j∈J

p←j (Vj) 6≤ b. If not, then
∧
j∈J

p←j (Vj) ≤ b. By

the definition of α(b), ∀x ∈ α(b), there exists j0 ∈ J such that p←j0 (Vj0) ≤ x. This
yields a contradiction. So, p←j (Vj) ≤ C.

Let

Vj = {Vj ∈ LXj | p←j (Vj) = C, a′ ≤ Tj(Vj), C ∈ U0},
and

Rj = {p←j (Vj) ∈ LX | Vj ∈ LXj , p←j (Vj) = C, a′ ≤ Tj(Vj), C ∈ U0},
5
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where ∀j ∈ J ⊆ I. Then Vj 6∈ ST (Aj), for any j ∈ J , i.e., ∀j ∈ J . Then we can
obtain

∧
xj∈Xj

A′j(xj) ∨ ∨
Vj∈Vj

Vj(xj)

 ≤ ∨
Wj∈2(Vj)

∧
xj∈Xj

A′j(xj) ∨ ∨
Vj∈Wj

Vj(xj)

 .

Meanwhile, we can obtain ∨
C∈U0

C ≤
∨
j∈J

∨
Vj∈Vj

p←j (Vj).

Let r =
∧
x∈X

(
A′(x) ∨

∨
C∈U0

C(x)

)
. Then

r ≤
∧
x∈X

∨
j∈I

A′j(p
→
j (x)) ∨

∨
j∈J

∨
Vj∈Vj

p←j (Vj)(x)



=
∧
x∈X

∨
j 6∈J

A′j(p
→
j (x)) ∨

∨
j∈J

A′j(p→j (x)) ∨
∨

Vj∈Vj

Vj(p
→
j (x)

 .

Taking any d ∈ β∗(r).
Case1: If d ≤

∧
x∈X

∨
j∈I

A′j(p
→
j (x)), then

d ≤
∧
x∈X

∨
j∈I

A′j(p
→
j (x)) =

∧
x∈X

A′(x) ≤
∨

V∈2(U0)

∧
x∈X

(
A′(x) ∨

∨
C∈V

C(x)

)
.

In this case, we have that∧
x∈X

(
A′(x) ∨

∨
C∈U0

C(x)

)
≤

∨
V∈2(U0)

∧
x∈X

(
A′(x) ∨

∨
C∈V

C(x)

)
.

Case2: If d 6≤
∧
x∈X

∨
j∈I

A′j(p
→
j (x)) (=

∨
j∈I

∧
xj∈Xj

A′j(xj)), then there exists e ∈

β∗(
∧
j∈I

∨
xj∈Xj

Aj(xj)) such that e 6≤ d′. Thus ∀j ∈ I, there exists xj ∈ Xj such that

e�Aj(xj).
Next, we prove that

d ≤
∨
j∈J

∧
xj∈Xj

A′j(xj) ∨ ∨
Vj∈Vj

Vj(xj)

 .

If not, there exists h ∈ β∗
( ∧
j∈J

∨
xj∈Xj

(
Aj(xj) ∧

∧
Vj∈Vj

V ′j (xj)

))
such that h 6≤ d′.

Thus ∀j ∈ J ,there exists yj ∈ Xj such that h�Aj(xj) ∧
∧

Vj∈Vj
V ′j (xj).

6
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Taking z = {zj}j∈I such that zj = yj , when j ∈ J and zj = xj otherwise. Then

d� r ≤
∧
x∈X

∨
j 6∈J

A′j(p
→
j (x)) ∨

∨
j∈J

A′j(p→j (x)) ∨
∨

Vj∈Vj

Vj(p
→
j (x))


≤
∨
j 6∈J

A′j(p
→
j (z)) ∨

∨
j∈J

A′j(p→j (z)) ∨
∨

Vj∈Vj

Vj(p
→
j (z))


≤
∨
j 6∈J

A′j(xj) ∨
∨
j∈J

A′j(yj) ∨ ∨
Vj∈Vj

Vj(yj)

 .

Thus d′ ≥
∧
j 6∈J

Aj(xj) ∧
∧
j∈J

(
Aj(yj) ∧

∧
Vj∈Vj

V ′j (yj)

)
≥ e ∧ h. This implies e ≤ d′ or

h ≤ d′. This yields a contradiction. So

d ≤
∨
j∈J

∧
xj∈Xj

A′j(xj) ∨ ∨
Vj∈Vj

Vj(xj)


≤
∨
j∈J

∨
Wj∈2(Vj)

∧
xj∈Xj

A′j(xj) ∨ ∨
Vj∈Wj

Vj(xj)


=
∨
j∈J

∨
Wj∈2(Vj)

∧
xj∈Xj

(
A′j ∨

∨
Wj

)
(xj)

≤
∨
j∈J

∨
Wj∈2(Vj)

∧
x∈X

p←j (A′j) ∨
∨

Vj∈Wj

p←j (Vj)

 (x)

≤
∨
j∈J

∨
Wj∈2(Vj)

∧
x∈X

A′ ∨ ∨
Vj∈Wj

p←j (Vj)

 (x)

≤
∨
j∈J

∨
Dj∈2(Rj)

∧
x∈X

(
A′ ∨

∨
Dj
)

(x)

≤
∨

V∈2(U0)

∧
x∈X

(
A′(x) ∨

∨
C∈V

C(x)

)
.

In this case, we also have that∧
x∈X

(
A′(x) ∨

∨
C∈U0

C(x)

)
≤

∨
V∈2(U0)

∧
x∈X

(
A′(x) ∨

∨
C∈V

C(x)

)
.

Both cases 1 and 2, we know that U0 6∈ ST (A). However, U0 ∈ ST (A), which is a
contradiction. Hence

FCDT (A) 6≤ b.
7



Zhao and Zhang /Ann. Fuzzy Math. Inform. x (201y), No. x, xxx–xxx

Therefore,

FCDT (A) ≥
∧
j∈I

FCDTj (Aj).

(2) By (1) and Lemma 1.7, we can easily obtained the result. Then we omit
it. �
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